Lecture 4 - Sep. 20

Lexical Analysis

Strings, Languages Regular Expressions

Announcements

- Assignment 1 Released \dagger Required slides already made available
t In-class discussion will catch up this or next week
Programming Test date semi-confirmed:
+2:00pm to 3:20pm on Saturday, October 29
+ Venue to be confirmed (LAS)
Quiz 1 next Tuesday
Is there any reason I need to wait to go through the ANTLR4 tutorial series on YouTube over reading week?
Will I need the lecture right before to understand it?
- RE
- CFG
- OOP and Composite \& visitor design patterns

Formulating Strings
\checkmark Set of Strings of Length k

$$
\Sigma^{k}=\left\{\omega| | \omega \mid=k \wedge \omega \in \Sigma^{*}\right\}
$$

Set of Nonempty Strings

$$
\Sigma^{+}=\Sigma^{1} v \Sigma^{2} \cup \sum^{3} v \bigcup_{k \geq 0} \Sigma^{k}
$$

Set of Strings of All Possible Lengths

$$
\begin{aligned}
& \text { alphabet } \\
& \Sigma=\{a \cdot b\} \quad\{x y \mid(x=0 \wedge y=1) \wedge \\
& \left.\Sigma^{\prime}=\begin{array}{c}
\{@, b\} \\
\downarrow \\
\downarrow
\end{array}|\quad| x \right\rvert\, \\
& L \subseteq \Sigma^{*} \quad \text { stang leet }^{\text {th }} 1 \\
& { }^{0} \omega \in L \Rightarrow \omega \in \Sigma^{*} \downharpoonleft \\
& { }^{(2)} \omega \in \Sigma^{*} \Rightarrow \omega \in L \\
& \left\{\omega_{1} \omega_{2} \mid \omega_{1} \in\{0\}^{*} \lambda\right. \\
& W z \in\{1\}^{*} \wedge \\
& \left.\left|\omega_{1}\right|=\left|\omega_{2}\right|\right\}
\end{aligned}
$$

denotes
0^{+}
landage (cxt d stings)

$$
\left\{\begin{array}{l}
\left\{0 x \mid x \in\{I\}^{*}\right\} \cup\left\{I x \mid x \in\{0\}^{*}\right\} \\
\left\{y x \left\lvert\,\left(x \in\{I\}^{*}\right) \vee\left(\begin{array}{c}
\left.\left.x \in\{0\}^{*}\right)\right\} \\
y=0 \\
y=1 x
\end{array}\right.\right.\right.
\end{array}\right.
$$

$$
\Sigma=\{0,1\}
$$

smplest, RE: 0 "rate-enty" I
\sum all stings with length k
k
k concatenations of strings doses from L.

Regular Language Operations

$$
\begin{aligned}
& \frac{L}{M}=\{a b, b c, c a\} \\
& M-=\{b a, c b\}
\end{aligned}
$$

1. Union

$$
\begin{aligned}
& |L \cup M|=\{w \mid w \in L v w \in M\} \\
& \{a b, b c, c a, b a, c b\}
\end{aligned}
$$

$$
\left|L^{\tau}\right|=|L|^{i}
$$

2. Concatenation
$|L M|_{\{x y \mid x \in L \wedge y \in M\}}\{w v \mid w \in L \wedge v \in M\}$ $\{a b b a, a b c b, b c b a, b c c b, c a b a, c a c b\}$
3. Kleene Closure (or Kleene Star)

$$
\mid ¢
$$

$$
\begin{aligned}
& L^{0}=\{\varepsilon\} \\
& L^{1}=\{x \mid x \in L\}=L \\
& \frac{L^{2}}{\vdots}=\{\otimes \operatorname{div} y \mid x \in(\Delta) \wedge y \in L\} \\
& \text { Cardinalities? }
\end{aligned}
$$

$$
\begin{aligned}
& L=\{0\}^{*} \text { ocamatanations } \\
& L^{*}=L^{0} \underline{L}^{7} u \underline{L}^{2} u \cdots \\
& =\{\varepsilon\} \cup\left\{x \mid x \in\{0\}^{*}\right\} \\
& u\left\{x y \mid x \in\{0\}^{*} \wedge y \in\{0\}\right\} \\
& u
\end{aligned}
$$

Constructions of REs

Recursive Case: Given that E and F are regular expressions:

- The union $E+F$ is a regular expression.

$$
\text { (L) } \frac{E+F}{d \mid} \in=
$$

- The concatenation $E F$ is a regular expression.

$$
L(E F)=
$$

- Kleene closure of E is a regular expression.

$$
(E \cup F) \times
$$

$$
L\left(E^{*}\right)=(L(E))^{*}
$$

- A parenthesized E is a regular expression.

$$
L((E))=L(E)
$$

Base Case:

- Constants ϵ and \varnothing are regular expressions.

- An input symbol $a \in \Sigma$ is a regular expression.

$$
L(\mathrm{a})=\{\mathrm{a}\}
$$

